Physicochem. Probl. Miner. Process. 53(2), 2017, 1188-1199

www.minproc.pwr.wroc.pl/journal

ISSN 1643-1049 (print) ISSN 2084-4735 (online)

Received January 6, 2017; reviewed; accepted April 30, 2017

One step purification of impurities in the leachate of weathered crust elution-deposited rare earth ores

Fang Zhou, Jian Feng, Ziqing Wang, Yuanlai Xu, Zhenyue Zhang, Ruan Chi

Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430073, Hubei, China. Corresponding author: rac@wit.edu.cn (Chi Ruan)

Abstract: It is necessary to control and reduce the high content of Al^{3+} , Cu^{2+} and Pb^{2+} ions in the leachate of weathered crust elution-deposited rare earth ore to facilitate the rare earth recovery and the quality of rare earth products. Neither NH_4HCO_3 nor Na_2S are suitable for removal of all impurity ions and meanwhile maintain high rare earth recovery. Conventionally, NH_4HCO_3 is firstly adopted to remove Al^{3+} , and then Cu^{2+} and Pb^{2+} are removed by using Na_2S . This two steps purification process is quite long and results in lots of complication in operation. In this paper, a one-step purification by using the compound of NH_4HCO_3 and Na_2S was proposed to remove Al^{3+} , Cu^{2+} and Pb^{2+} . The results showed that after purification 89% Cu, 92% Pb and 74% Al were removed from the leachate solution by using 0.1 M compound of NH_4HCO_3/Na_2S , while maintaining 89% rare earth. The optimal purification parameters were: volume ratio of NH_4HCO_3 to Na_2S of 9:1, volume ratio of compound to leachate of 0.05:1, precipitation time of 30 min.

Keywords: leachate, weathered crust, rare earth ore, leachate purification, precipitation

Introduction

The weathered crust elution-deposited rare earth ore rich in medium and heavy rare earth (RE) is the China unique mineral resource, which is distributed in southern China, such as Jiangxi, Fujian, Hunan, Guangdong and Guangxi (Chi and Tian, 2008; He et al., 2016a). The weathered crust elution-deposited rare earth ore is composed of clay minerals that absorb rare earth ions (Chi et al., 2005). According to the property of the rare earth mainly as an ion-exchange phase in the ore, many researchers have suggested leaching of RE with an electrolyte solution (He et al., 2016b; Huang et al., 2005; Xiao et al., 2015a; Zhang et al., 2016; Luo et al., 2015a; Moldoveanu and Papangelakis, 2016). The challenge of the proposed electrolyte solution leaching process is that the leachate from the weathered crust elution-deposited rare earth ore contains high levels of impurity ions, and subsequently has a low concentration of RE

(Xiao et al., 2015b; Luo et al., 2015b). The typical impurity ions in the leachate are Al^{3+} , Cu^{2+} and Pb^{2+} , which participate in the leaching process (Zuo et al., 2007). They must be removed, otherwise it affects the quality of rare earth precipitation products, greatly increasing the consumption of oxalic acid, and even difficult to form rare earth carbonate crystals.

 NH_4HCO_3 as a neutralizing reagent can be used to remove impurities from the RE leachate. The Al^{3+} can be hydrolyzed and subsequently precipitated as hydroxide, while rare earth ions do not precipitate at the appropriate pH. However, Pb^{2+} is not suitable to be removed by NH_4HCO_3 as it has the same precipitation pH as $RE^{3+}(Chi and Tian, 2008)$. For Cu^{2+} and Pb^{2+} removal, there are a number of conventional methods such as chemical precipitation (Bozecka et al., 2016), ion exchange (Rao et al., 2010) and adsorption by active carbon (Machida et al., 2012) which can be used. Among these methods, chemical precipitation is widespread for RE leachate purification due to the equipment conveniences and the low cost of operation. Al^{3+} in the RE leachate solution is first removed by either NH_4HCO_3 or other aluminum removal agents, and then Cu^{2+} and Pb^{2+} are precipitated by sulfite. Either a two-step or multi-step purification is needed resulting in a longer purification procedure and a complicated operation.

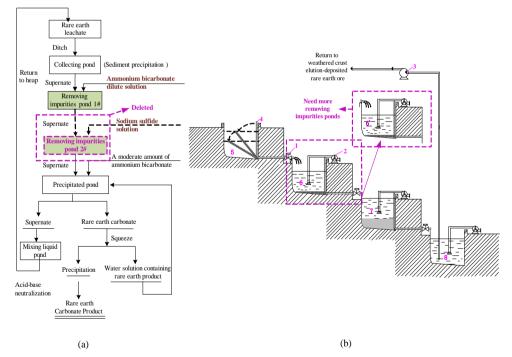


Fig. 1. Comparison of proposed one-step purification to conventional two-step procedure,
(a) flowsheet of leaching solution treatment;
(b) profile map of setting ponds (1 – ball valve,
2 – blower, 3 – pump, 4 – plastic tubing, 5 – collecting pond, 6 – removing impurities pond 1#,
6' – removing impurities pond 2#, 7 – precipitation pond, 8 – mixing liquid pond)

One-step purification by using the compound of NH₄HCO₃ and Na₂S is proposed to remove the impurity ions of Al³⁺, Cu²⁺ and Pb²⁺. The proposed flowsheet for the RE leachate purification is shown in Fig. 1 and compared to the conventional two-step purification flowsheet. Figure 1 shows that when the proposed compound of NH₄HCO₃ and Na₂S is used as a precipitator, the impurities pond 2# can be removed. The conventional two-step or multi-step purification is simplified to a one-step, which saves a row of precipitation ponds. For a further investigation on purification effects, the precipitation time, volume ratio, slurry pH and volume ration of compound were discussed towards to maintain RE recovery and increase Al³⁺, Cu²⁺ and Pb²⁺ removal rates.

Experimental procedure

Materials

All reagent grade chemicals in this study were purchased from Sinopharm Chemical Reagent Co., Ltd (Shanghai, China). Reagent grade HCl and ammonia were used as pH modifiers. The deionized water was produced by a water purification system. A weathered crust elution-deposited rare earth ore from Dingnan City, Jiangxi Province, China, was leached by 0.1 M NH₄Cl solutions to collect the leachate for the removing impurities experiments, where the contents of RE, Al³⁺, Cu²⁺ and Pb²⁺ in RE leachate were 0.722 g/dm³, 0.159 g/dm³, 0.46 mg/dm³ and 4.24 mg/dm³, respectively.

Removing impurities experiment

A 100 cm³ RE leachate was mixed with different concentrations and volumes of NH_4HCO_3 or/and Na_2S for each measurement. After standing for a certain precipitation time, the solutions were filtered, and then analyzed to calculate the recovery of RE, the removal rates of Al^{3+} , Cu^{2+} and Pb^{2+} .

Analytical methods

The total content of RE in solutions was analyzed by EDTA titration, and the Al^{3+} content in solutions was analyzed by EDTA inverse titration. The detail description can be found elsewhere (He et al., 2015, 2016a, b). The contents of Cu²⁺ and Pb²⁺ in solutions were tested by an atomic absorption spectrophotometer (AA6300; Shimadzu, Japan). Then, the RE recovery and the removal rates of Al³⁺, Cu²⁺, and Pb²⁺ for each purification experiment were calculated as follows:

$$R_{RE} = \frac{C'_{RE}}{C_{RE}} \cdot 100\% \tag{1}$$

$$R_{impurity ions} = \frac{C - C'}{C} \cdot 100\%$$
⁽²⁾

where, the R_{RE} is the RE recovery, the $R_{impurity ions}$ is the removal rate of impurity ions, C'_{RE} and C' are the RE and impurity ions contents after purification, respectively, C_{RE} and C are the RE and impurity ions content of leachate, respectively.

Results and discussion

Removal of impurities from rare earth leachate by NH₄HCO₃

Effect of precipitation time

 NH_4HCO_3 as a typical weak acid and weak base salt is easy to decompose in the aqueous solution. The hydroxide ion by hydrolysis can remove the impurity ions from the RE leachate through the precipitation reaction (Iskrenova and Patnaik, 2016). The NH_4HCO_3 solutions with different concentrations were discussed under different volume ratios and solution pHs in order to know its removal characteristics.

The precipitation time of NH_4HCO_3 , Na_2S and their compound are determined from Figure 2. Figure 2 shows that the RE recovery and the removal rates of impurity ions increase with the increasing of precipitation time, and all of them are approaching to the equilibrium point at around 30 min. Therefore, the precipitation time is determined as 30 min for the following experiments.

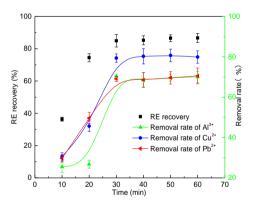


Fig. 2. Effect of precipitation time on the RE recovery and removal rates of Al^{3+} , Cu^{2+} and Pb^{2+} (NH₄HCO₃ concentration: 7.9%; NH₄HCO₃/leachate volume ratio: 0.05:1; pH = 4.8; room temperature)

Effect of NH₄HCO₃/leachate volume ratio

The 7.9% of NH₄HCO₃ solutions were mixed with RE leachates at pH 4.8 at different volume ratios (NH₄HCO₃ : leachate), 0.02:1, 0.03:1, 0.04:1, 0.05:1, 0.06:1, 0.08:1, 0.1:1 for 30 min, and then the solutions were filtered and analyzed. The results are shown in Fig. 3. From Figure 3, the RE recovery decreases with the increase of NH₄HCO₃ consumption, but the removal rates of impurity ions increase, suggesting that both the RE ions and the impurity ions can be precipitated by the NH₄HCO₃ solution. At the volume ratio of 0.05:1, the removal rates of Al³⁺, Pb²⁺ and Cu²⁺ reach

relative high values, 70, 69 and 79%, respectively. The RE recovery is about 84%. Thus, 0.05:1 was chosen as a suitable volume ratio in the purification experiments by NH_4HCO_3 .

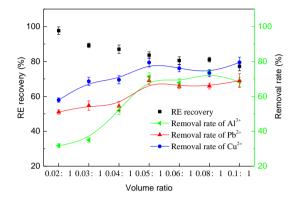


Fig. 3. Effect of NH₄HCO₃/leachate volume ratio on RE recovery and removal rates of Al³⁺, Cu²⁺ and Pb²⁺ (NH₄HCO₃ concentration:7.9%; pH = 4.8; precipitation time: 30 min; room temperature)

Effect of NH₄HCO₃ concentration

At a volume ratio of 0.05:1 and solution pH of 4.8, NH_4HCO_3 solutions with different mass concentrations, that is 3.5, 4.6, 5.58, 6.8, 7.9, 8.7 and 9.8%, were applied to remove the impurity ions from the RE leachate. The RE recovery and the removal rates of Al^{3+} , Pb^{2+} and Cu^{2+} are shown in Figure 4.

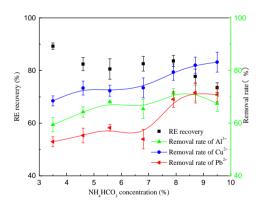


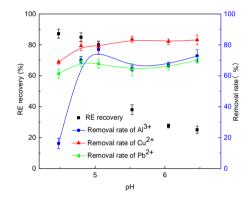
Fig. 4. Effect of NH_4HCO_3 concentration on RE recovery and removal rates of Al^{3+} , Cu^{2+} and Pb^{2+} (NH_4HCO_3 /leachate volume ratio :0.05:1; pH = 4.8; precipitation time: 30 min; room temperature)

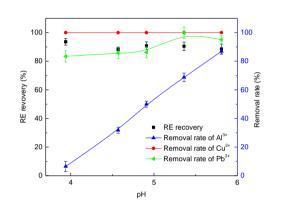
The RE recovery decreases with the NH_4HCO_3 concentration increase (Fig. 4). The removal rates of Pb^{2+} and Cu^{2+} increase with the NH_4HCO_3 concentration increase, and gradually tend to be steady when the NH_4HCO_3 concentration is higher than 7.9%. The removal rate of Al^{3+} is up to the highest value at the NH_4HCO_3 concentration of 7.9%, and then decreases with the NH_4HCO_3 concentration increase. Aluminum in the

RE leachate exists as various forms with the pH change, such as Al^{3+} , $Al(OH)_3$, AlO_2^- and others. The precipitate of $Al(OH)_3$ is a typical amphoteric compound, which dissolves in the alkaline environment resulting from the high NH₄HCO₃ concentration. The suitable NH₄HCO₃ concentration is thus 7.9% for the purification experiment by NH₄HCO₃.

Effect of solution pH

Since the strong alkalis condition is adverse to the RE recovery (Yu et al., 1993; Zhang et al., 1996), the effects of solution pH in the range from 4.4 to 6.5 are discussed and shown in Fig. 5. With increasing of pH, the RE recovery decreases due to precipitation of RE ions in the weak alkaline environment (Chi and Tian, 2008). The removal rates of Pb²⁺ and Cu²⁺ increase with the pH increase, and the Al³⁺ reaches the highest value at pH 4.8. The suitable pH is thus determined as 4.8 for NH₄HCO₃ as precipitator.




Fig. 5. Effect of solution pH on RE recovery and removal rates of Al³⁺, Cu²⁺ and Pb²⁺ (NH₄HCO₃/leachate volume ratio :0.05:1; NH₄HCO₃ concentration: 7.9%; precipitation time: 30 min; room temperature)

The optimum technological conditions for removing impurity ions from RE leachate by NH_4HCO_3 are obtained as 0.05:1 of volume ratio, 7.9% of NH_4HCO_3 concentration and 4.8 of pH. About 70% of Al^{3+} , 79% Cu^{2+} , 69% Pb^{2+} in RE leachate are removed and 84% RE are kept. Here, the removal rates of Cu^{2+} and Pb^{2+} , 79% and 69%, are imperfect for the following rare earth product industrial production. A better precipitator is thus still needed to find.

Removal of impurities from rare earth leachate by Na2S

The purification results with NH_4HCO_3 as the precipitator indicate the importance of solution pH over the concentration and volume ratio. For a better comparison of Na_2S to NH_4HCO_3 , 0.1 M Na_2S solutions with the same concentration to NH_4HCO_3 were mixed with 100 cm³ RE leachates at the same volume ratio of 0.05:1, and then the solution pHs were adjusted to 3.94, 4.57, 4.91, 5.36 and 5.81, respectively. After

precipitation and filtration, the RE recovery and the removal rates of Al^{3+} , Pb^{2+} and Cu^{2+} were analyzed and the results are shown in Fig. 6. From Figure 6, the high recovery of RE has a little change among the tested pH range suggesting that no rare earth sulfide or hydroxide is generated, since the precipitation pH of rare earth hydroxide is around 6.0-8.0 (Chi and Tian, 2008). For the Pb²⁺ and Cu²⁺, a similar variation tendency like the RE recovery is investigated and almost all of Cu²⁺ are removed, indicating that Pb²⁺ and Cu²⁺ impurity ions are precipitated by forming PbS and CuS. Na₂S reacts to Al³⁺ as follows:

$$2AI^{3+} + 3S^{2-} + 6H_2O = 2AI(OH)_3\downarrow + 3H_2S\uparrow.$$
 (3)

Fig. 6. Effect of Na₂S on RE recovery and removal rates of Al³⁺, Cu²⁺ and Pb²⁺ as a function of pH (Na₂S /leachate volume ratio :0.05:1; Na₂S concentration: 0.1 M; precipitation time: 30 min; room temperature)

The S²⁻ content in the solution decreases in the weak acid environment or in the weakly acidic RE leachate due to the generation of H_2S . The removal rate of Al^{3+} is thus very low among pH 3.94-5, and then increases with the pH increase (Fig. 6). The results in Fig. 6 suggest that Na₂S is a good precipitator to remove Pb²⁺ and Cu²⁺ from the RE leachate and while keeps a high RE recovery, especially at pH higher than 5.5. However, the potential H_2S by-product is a toxic chemical and the presence of S²⁻ in the solutions is disadvantageous to production of rare earth carbonate in the following RE industrial production. Thus, Na₂S as the precipitator is imperfect to remove impurity ions from the RE leachate.

Impurity ions behavior of Al³⁺, Cu²⁺ and Pb²⁺ with NH₄HCO₃ and Na₂S

The principle of removing impurities by NH_4HCO_3 is that the part of impurity ions is hydrolyzed, and then precipitated as hydroxide while rare earth ions are not precipitated. Sodium sulfide is worked through the black precipitate formation of heavy metal sulfides. The possible reactions are as follows:

$$Al^{3+} + 3OH^{-} = Al(OH)_{3} \downarrow$$
(4)

$$Cu^{2+} + 2OH^{-} = Cu(OH)_{2} \downarrow$$
(5)

$$Pb^{2+} + 2OH^{-} = Pb(OH)_{2} \downarrow$$
(6)

$$Cu^{2+} + S^{2-} = CuS \downarrow \tag{7}$$

$$Pb^{2+} + S^{2-} = PbS\downarrow.$$
(8)

The solubility product constants K_{sp} of these precipitates are shown in Table 1.

Elements	Precipitate	K_{sp}
RE^{3+}	RE(OH) ₃	3.0×10 ⁻²⁴
Al^{3+}	Al(OH) ₃	1.30×10 ⁻³³
Cu ²⁺	Cu(OH) ₂	2.20×10 ⁻²⁰
	CuS	6.00×10 ⁻²⁶
Pb^{2+}	Pb(OH) ₂	1.20×10 ⁻¹⁵
	PbS	9.04×10 ⁻²⁹

Table 1. K_{sp} of metal precipitates formed with impurity ions

For the hydroxide precipitates

$$\mathbf{M}^{\mathbf{n}^{+}} + \mathbf{n}\mathbf{O}\mathbf{H}^{-} = \mathbf{M}(\mathbf{O}\mathbf{H})_{\mathbf{n}}\downarrow \tag{9}$$

 K_{sp} is described as:

$$K_{sp} = [\mathrm{Mn}^+][\mathrm{OH}^-]^{\mathrm{n}} \tag{10}$$

$$\mathrm{H}^{+} + \mathrm{OH}^{-} \leftrightarrow \mathrm{H}_{2}\mathrm{O} \tag{11}$$

$$K_{w} = [\mathrm{H}^{+}][\mathrm{OH}^{-}] = 10^{-14}.$$
 (12)

By taking minus logarithm of both sides, the relationships between pM (RE^{3+} , Al^{3+} , Cu^{2+} , Pb^{2+}) and pH are obtained as follows:

$$pM_{RE^{3+}} = 3pH - 18.48 \tag{13}$$

$$pM_{Al^{3+}} = 3pH - 9.11 \tag{14}$$

$$pM_{Cu^{2+}} = 2pH - 22.34 \tag{15}$$

$$pM_{Pb^{2+}} = 2pH - 27.08.$$
(16)

For the sulfide precipitates, the relationships between pM (Cu^{2+} , Pb^{2+}) and pH are also obtained by the same method as follows:

$$pM_{Cu^{2+}} = 2pH + 3.30 \tag{17}$$

$$pM_{Pb^{2+}} = 2pH + 6.12.$$
(18)

Figure 7 is the pM-pH of NH_4HCO_3 and Na_2S system obtained from Eqs. 13-18, where Al^{3+} exists on the left of blue line and $Al(OH)_3$ is on the other side. The RE³⁺ and RE(OH)₃ are on the left and right of black line, respectively. The precipitating pH of $Al(OH)_3$ is lower than that of RE(OH)₃, suggesting that most of $Al(OH)_3$ can be precipitated while little RE precipitate is formed, especially at pH 5 (Chi and Tian, 2008). Therefore, Al^{3+} can be removed by the NH_4HCO_3 . However, it is not fit for Cu^{2+} and Pb^{2+} due to the higher precipitating pH of $Cu(OH)_2$ and $Pb(OH)_3$ than RE(OH)₃. Since RE ions do not react with S^{2-} directly to form the sulfide precipitate, sodium sulfide can be adopted to remove the heavy metal ions in the RE leachate. Figure 7 shows that purple (PbS) and red (CuS) lines are upper than the black line (RE(OH)₃), indicating an efficient removing way of Cu^{2+} and Pb^{2+} by sulfide precipitation method.

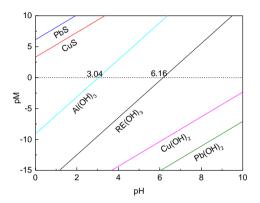


Fig. 7. pM-pH diagram of Al^{3+} , Cu^{2+} and Pb^{2+} in NH_4HCO_3 and Na_2S system

One-step purification of impurities from the rare earth leachate by the compound of NH₄HCO₃ and Na₂S

According to the discussion of impurity ions behavior and the above experiment results, it is found that NH_4HCO_3 is beneficial to Al^{3+} removal, but imperfect to remove Cu^{2+} and Pb^{2+} than Na_2S . Furthermore, NH_4HCO_3 has a less bad influence than Na_2S on the following RE industrial production, and is more environmentally friendly. The compound of NH_4HCO_3 and Na_2S is thus proposed to remove impurity ions from the RE leachate. Different compounds of NH_4HCO_3 and Na_2S with 0.1 M concentration were prepared at the volume ratio of 5:5, 6:4, 7:3, 8:2 and 9:1 for the purification experiments. The effects of different compounds among pH range from 3.0-6.5 are shown in Fig. 8.

It is interesting to find that the RE recovery decreases with the increasing of pH, and decrease to a lower value at pH higher than 5 among all figures, but it does not decrease with the Na₂S dosage increase, which can be attributed to the generation of RE hydroxide and/or carbonate. In Figure 8(a) and 8(b), the removal rate of AI^{3+} and the RE recovery are very low, although the removal rates of Cu^{2+} and Pb^{2+} are very high, indicating an imperfect purification effect of the NH₄HCO₃ and Na₂S compound at volume ratio of 5:5 and 6:4. From Figure 8(c), the removal rate of AI^{3+} is lower than 60% among the tested pH range, although it increases with the increasing of NH₄HCO₃ consumption compared to Fig. 8(b), suggesting the compound of NH₄HCO₃:Na₂S = 7:3 is also unsuitable to remove impurity ions. For the

 $NH_4HCO_3:Na_2S = 8:2$ in Fig. 8(d), the removal rates of Cu^{2+} , Pb^{2+} and Al^{3+} increase with the increasing pH. At pH about 6.0, the removal rate of Al^{3+} is up to 70%, the Cu^{2+} and Pb^{2+} are higher than 86%, but the RE recovery is lower than 65%. A lot of rare earth resources are lost indicating that the $NH_4HCO_3:Na_2S = 8:2$ is also unsuitable to remove impurity ions from the RE leachate.

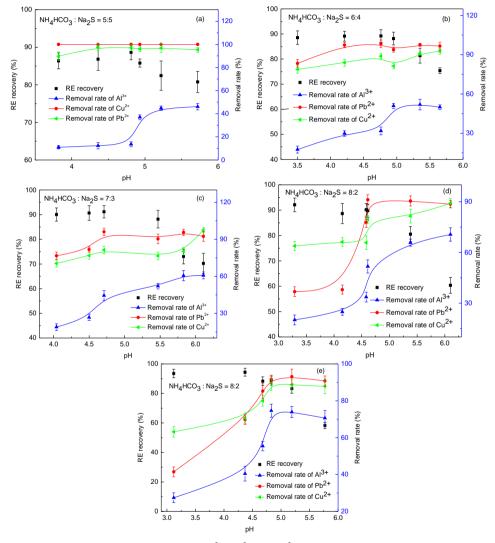


Fig. 8. RE recovery and removal rates of Al³⁺, Cu²⁺ and Pb²⁺ as a function of pH (compound/leachate volume ratio of 0.05:1; compound concentration 0.1 M; precipitation time 30 min; room temperature); (a) NH₄HCO₃:Na₂S volume ratio of 5:5; (b) NH₄HCO₃:Na₂S volume ratio of 6:4; (c) NH₄HCO₃:Na₂S volume ratio of 7:3; (d) NH₄HCO₃:Na₂S volume ratio of 8:2; (e) NH₄HCO₃:Na₂S volume ratio of 9:1

Figure 8(e) shows that the removal rates of Cu^{2+} , Pb^{2+} and Al^{3+} increase with the increasing pH at the volume ratio of $NH_4HCO_3:Na_2S = 9:1$. The RE recovery decreases with the pH increase. At the pH around 4.8-5.1, the removal rates of Cu^{2+} , Pb^{2+} and Al^{3+} reach about 89, 92 and 74%, respectively, and the RE recovery is about 89%, indicating that most rare earth resources is kept in the leachate for the following rare earth production and the impurity ions of Cu^{2+} , Pb^{2+} and Al^{3+} are removed. Furthermore, the pH of the compound of NH_4HCO_3 and Na_2S at volume ratio of 9:1 is around 4.9, which is consistent with the optimum pH in the purification process, suggesting an easier and more economic rare earth production without pH modifier.

Conclusions

The results presented in this study showed the single NH_4HCO_3 as precipitator was not effective enough to remove impurity ions especially Cu^{2+} and Pb^{2+} from RE leachate, and Na_2S as the precipitator was beneficial to the precipitation of Cu^{2+} and Pb^{2+} , but fail to precipitate Al^{3+} . For a better impurity purification, the compound of $NH_4HCO_3:Na_2S$ was proposed based on the discussion of impurity ions behavior, which simplified the conventional two-step or multi-step purification to a one-step procedure. The optimum technological conditions for the system were obtained: compound concentration 0.1 M, $NH_4HCO_3:Na_2S$ 9:1, compound/leachate volume ratio 0.05:1, precipitation time 30 min and the solution pH around 4.9 without any pH modifier. A purified RE leachate with the removal rates of Cu^{2+} , Pb^{2+} and Al^{3+} reaching about 89, 92, 74%, respectively, and the RE recovery being about 89% were obtained, which was suitable to the following rare earth production.

Acknowledgments

The work is financially supported by the grants from the National Natural Science Foundation of China (NO. 51274152) and Wuhan Institute of Technology (237850) (China).

References

- BOZECKA, A., BOZECKI, P., SANAK-RYDLEWSKA, S., 2016, Removal of Pb (II) and Cd (II) ions from aqueous solutions with selected organic wastes, Physicochemical Problems of Mineral Processing, 52, 1, 380-396.
- CHI R. A., TIAN J.,2008, *Weathered crust elution-deposited rare earth ores*, New York: Nova Science Publishers.
- CHI R. A., TIAN J., LI Z., PENG C., WU Y. X., LI S. R., WANG C. W., ZHOU Z. A., 2005, *Existing state and partitioning of rare earth on weathered ores*, Journal of Rare Earths, 23, 6, 756-759.
- HE Z. Y., ZHANG Z. Y., YU J. X., XU Z. G., CHI R. A., 2016a, *Process optimization of rare earth and aluminum leaching from weathered crust elution-deposited rare earth ore with compound ammonium salts*, Journal of Rare Earths, 34, 4, 413-419.
- HE Z. Y., ZHANG Z. Y., YU J. X., ZHOU F., XU Y. L., XU Z. G., CHEN Z., CHI R. A., 2016b, *Kinetics of column leaching of rare earth and aluminum from weathered crust elution-deposited rare earth ore with ammonium salt solutions*, Hydrometallurgy, 163, 33-39.

- HE Z. Y., ZHANG Z. Y., YU J. X., CHI R. A., 2015, *Behavious of rare earth, aluminum and ammonium in leaching process of weathered crust elution-deposited rare earth ore*, Chinese Rare Earths (in Chinese), 6, 18-24.
- HUANG X. W., LONG Z. Q., LI H. W., YING W. J., ZHANG G. C., XUE X. X., 2005, Development of rare earth hydrometallurgy technology in China, Journal of Rare Earths, 23, 1, 1-4.
- ISKRENOVA E. K., PATNAIK S. S., 2016, Solvent effects in the thermal decomposition reaction of ammonium carbamate: A computational molecular dynamics study of the relative solubilities of CO₂ and NH₃ in water, ethylene glycol, and their mixtures, International Journal of Heat and Mass Transfer, 100, 224-230.
- LUO X. P., FENG B., WANG P. C., ZHOU H. P., CHEN X. M., 2015a, The effect of fulvic acid on the leaching of a weathered rare-earth ore, Metallurgical and Materials Transactions B, 46, 6, 2405-2407.
- LUO X. P., ZOU L. P., MA P. L., LUO C. G., XU J., TANG X. K., 2015b, Removing aluminum from a low-concentration lixivium of weathered crust elution-deposited rare earth ore with neutralizing hydrolysis, Rare Metals, 1-6.
- MOLDOVEANU G. A., PAPANGELAKIS V. G., 2016, An overview of rare-earth recovery by ionexchange leaching from ion-adsorption clays of various origins, Mineralogical Magazine, 80, 1, 63-76.
- MACHIDA, M., FOTOOHI, B., AMAMO, Y., MERCIER, L, 2012, Cadmium (II) and lead (II) adsorption onto hetero-atom functional mesoporous silica and activated carbon, Applied Surface Science, 258, 19, 7389-7394.
- RAO, K. S., CHAUDHURY, G. R., MISHRA, B. K., 2010, Kinetics and equilibrium studies for the removal of cadmium ions from aqueous solutions using Duolite ES 467 resin, International Journal of Mineral Processing, 97,1, 68-73.
- XIAO Y. F., LIU X. S., FENG Z. Y., HUANG X. W., HUANG L., CHEN Y. Y., WU W. Y., 2015a, Role of minerals properties on leaching process of weathered crust elution-deposited rare earth ore, Journal of Rare Earths, 33, 5, 545-552.
- XIAO Y. F., FENG Z. Y., HUANG X. W., HUANG L., CHEN Y. Y., WANG L. S., LONG Z. Q., 2015b, Recovery of rare earths from weathered crust elution-deposited rare earth ore without ammonianitrogen pollution: I. leaching with magnesium sulfate, Hydrometallurgy, 153, 58-65.
- YU Q. H., ZHU H. Y., LEI H., LI X. B., 1993, *Precipitation of rare earth carbonate from low grade leachate of rare earth ore*, Chinese Rare Earths (in Chinese), 14, 4, 14-17.
- ZHANG Z. Y., HE Z. Y., YU J. X., XU Z. G., CHI R. A., 2016, Novel solution injection technology for in-situ leaching of weathered crust elution-deposited rare earth ores, Hydrometallurgy, 164, 248-256.
- ZUO H., WANG Y. M., JIANG H. C., CHEN X. S., 2007, Seepage properties of leaching solution in ion-absorbed rare earth deposits under effect of electric field, Journal of the Chinese Rare Earth Society, 25, 1, 80.
- ZHANG L. Y., WU Z. H., ZHANG H. J., 1996, *Preparation of the mixed crystalline rare earth carbonate*. Chinese Rare Earths (in Chinese), 17, 3, 61-63.